#### **Climate Impacts Water**

#### **Bruce Daniels**

#### Ph.D. UCSC Hydroclimatology (Climate Change -> Water Resources)

http://YourWaterFuture.org/





# Topics

- Planning Before Now
- Current Drought
- Future Hydroclimatology
  - Temperature & Evaporation
  - Hydrology
  - Seasonality
  - Droughts
  - Rain Event Timing
- Sea Level Rise
- Conclusion

#### What Was Done Before

• Santa Cruz City Water Supply EIR: *"1976-1977 event has been established as the most severe drought [...], the City uses this as a benchmark for assessing system reliability"* 

|                     | Probability Of:              |                                   |                                    |
|---------------------|------------------------------|-----------------------------------|------------------------------------|
|                     | 0-5% Peak-Season<br>Shortage | 5-15% Peak-<br>Season<br>Shortage | 15-25% Peak-<br>Season<br>Shortage |
| NOP (2010)          | 7% of years                  | 1% of years                       | N/A                                |
| Long-term<br>(2030) | 5% of years                  | 11% of years                      | 1% of years                        |

EIR Table 8.3-1. Baseline of Water Supply Reliability



### Adapt Water Supply Planning to Climate Change

- Need More Details than:
  - "very likely a redistribution with intense precipitation periods alternated with very dry years"

Sierra Nevada Research Institute (UC Merced)

• Need Quantities and Time Periods like:

 "A water shortage worse than the one during the 1977 drought could occur in 1 out of every 6 to 8 years by mid century and 1 out of every 3 to 4 years at the end of the century"

Calif Dept. Water Resources



#### Current vs. Past Droughts



\* 9 Droughts 1890-2000 (110 yrs) 33 years were dry = <u>30 %</u>

Last 15 years, 11 dry = <u>73%</u>

\* April 1<sup>st</sup> 2015 Snow Survey 5% of Normal NEW RECORD Past record **1977** & **2014** 

\* January 2015 Precipitation ZERO = NEW RECORD Past record **2014** 

\* Winter 2015 Temperature Warmest = NEW RECORD Past record **2014** 



#### **Current Drought**

 Cause = High Pressure Ridge in NE Pacific Blocked Storms past 2 years



#### **Drought Cause?**

#### Declining Arctic Sea Ice Cover Effects [Sewall 2005]



• Climate Change -> "Three Times More Likely" [Swain et al. 2014]

#### What Does It Mean?

Random Natural Variability?

#### Or

#### Consequence of Climate Change?

# *"highly accurate prediction or one heck of a coincidence"!*



# Future Hydroclimatology

- Climate Change Study of Santa Cruz County
  - 'Simulation of Climate Change in San Francisco Bay Basins, California: Case Studies in the Russian River Valley and Santa Cruz Mountains'
    - U.S. Geological Survey
    - Scientific Investigations Report 2012–5132
    - Lorraine E. Flint and Alan L. Flint
    - Sponsored and Funded by Santa Cruz County, Department of Environmental Health Services



#### Temperature

• "Maximum air temperature in the Bay Area has steadily risen over the last century by 1 degree Celsius (°C), and all model and scenario projections indicate it will continue to rise." [USGS Flint 2012]

• "Increases in air temperature dominate the effects of climate change on the landscape, regardless of future changes in precipitation or water supply in the Santa Cruz Mountains." [USGS Flint 2012]



#### **Temperature -> Evaporation**

#### <u>Physics</u>: +1 °F Temperature $\rightarrow$ +4% Evaporation



#### **Evaporation Impact**

- PAST (Soquel-Aptos Basin)
  - Rain = 32.3"
  - Evaporation = 21.2"
  - 66% Lost
  - <u>34% Usable</u>



#### **Evaporation Impact**

- PAST (Soquel-Aptos Basin)
  - Rain = 32.3"
  - Evaporation = 21.2"
  - 66% Lost
  - <u>34% Usable</u>
- FUTURE??
  - Rain = 32.3"
  - Evaporation = **130%** \* 21.2" = 27.6"
  - 85% Lost



- <u>15% Usable</u>

# Hydrology

 "Declines in runoff and recharge for the GFDL model [...] along the coast in the mountains near Santa Cruz [...] of nearly 250 mm/year" (10"/year or -30%) [USGS Flint 2012]

 "Even the PCM model, which projected a general increase in precipitation, shows declines in recharge up to 200 mm/year in the Santa Cruz area" (8"/year or -25%)



### Your Hydrology







• "less precipitation in the fall (November–December) and spring (March–April)" [USGS Flint 2012]



UCSC research [Snyder et al. 2004]

#### Rain Season

Four months $\rightarrow$ Two monthsDec - Mar $\rightarrow$ Jan & Feb

#### **Dry Season**

Six months  $\rightarrow$  Eight months May - Oct  $\rightarrow$  Apr - Nov



### Future Drought

 "Future projections include more than one drought every decade, with a multi-decadal drought for {global climate model} GFDL-A2 at the end of the 21st century." [USGS Flint 2012]

#### **Drought 12 years long!**



#### Future Drought



[USGS Flint 2012]

### Future Drought Risks

Greater than "80% chance of a multi-decadal drought during 2050–2099"

"Exceptionally high risk of a multi-decadal megadrought occurring over the {Southwest} during the late 21st century"



# **Precipitation Event Timing**

• What if Total Precipitation = no change and Temperature = no change?

- Study 120 Yrs of Santa Cruz & Watsonville Daily Climate Observations
- Rain Events
  - Intensity = -2.9% per decade
  - Duration = +2.2% per decade
- Pauses between Events
  - Lull = +1.7% per decade

- "get weaker" "last longer"
- "gap bigger"



# Event Timing -> Hydrology

- Soquel-Aptos Basin Model (also Live Oak)
- Next 30 Years (2045)
- Rain Event Timing as Model Input
- No Temperature or Total Precipitation Changes
- Evaporation +4.4%
- Recharge
- Baseflow
- Streamflow

-6.7%

- -5.7%
- -3.0%

### Hydrology Impacts



#### Sea Level Rise





[California Climate Action Team 2010]

#### **Seawater Intrusion**

- EIR: "because the City's wells are located closest to the shoreline, they would be among the first impacted by seawater intrusion."
- EIR: "the City may need to further reduce pumping from the Live Oak wells due to lowered groundwater levels and the threat of seawater intrusion."



#### **City Seawater Intrusion**



#### Conclusions

- Santa Cruz is in a New Climate!
- Reasonable Water Target Required
  Water needed to protect till when
- Expect Conditions to Get Worse
- No Added Supply is Too Much
  - Any excess will be needed & soon

