Building Block #	1	2	2-small	3	3-small	4	5	6	7	7-lg	8	8-lg	9*** winter
Building Block Approach	In-Lieu	ASR	ASR Pase 1*	DPR	DPR small	IPR-Loch	IPR-SeaBar	IPR=>DPR**	DW Desal	DW lg.	Local Desal	Local Dsl lg.	flow harvest
Capital Cost (\$ M)	121	141	40	116	90	170	153	9	151	173	140	161	
Annual O&M cost (\$ M)	2.5	3.7		4.7	3.4	7.2	5.5	4.8	6.3	7.9	3.9	4.9	
Total Annualized Cost (\$ M)	12	15		14	11	21	18	6	18	22	15	18	
Present Value Costs (\$M)	276	341		300		470	400	120	410		340		
Energy Use (MWH/MG)	6.6	5.9		6.3	4.5	9.6	7.8	6.3	12.4	15.5	11.0	13.8	
Annual Production Cost (\$/MG)	133,300	42,900		8,200	10,000	12,200	na	3,300	16,700	16,000	13,700	13,100	
Average Annual Production (MG/year)	90	350	145	1715	1100	1715	na	1715	1100	1375	1100	1375	
Worst Year Yield (MG)	780	800		1110	710	1050	na	1110	710		710		460
Average Year Yield (MG)	290	310	130	340	330	330	na	340	330		330		
Worst year yield unit cost (Total Ann Cost/Wst Yr Yield)	15,400	18,800		12,600	15,500	19,900		5,000	25,900		21,300		
Average year yield unit cost (Total Ann Cost/Ave Yr Yield)	41,400	48,400		41,200	33,300	63,300		16,500	55,800		45,800		
Worst Year Peak Season Shortage (MG)	330	310		0	400	60	na	0	400		400		650
Worst Year Peak Season Shortage (%)	17%	17%		0%	21%	3%	na	0%	21%	<15%****	21%	<15%****	33%
Average Year Peak Season Shortage (MG)	50	30		0	10	0	na	0	10		10		80
Average Year Peak Season Shortage (%)	<3%	<2%		0%	<1%	0%	na	0%	<1%		<1%		4%
Approximate Timeline (Years)	8	15 to 20		9 to 13	9 to 13	8	8	2 (plus 8)	7	7	6	6	1-2?

^{*} Block 2 (ASR-small) starts ASR at the Beltz wells, as described in the Pueblo report, May 2015, Phase 1.

^{**} NOTE: As this is a conversion of Block 5, the unpaid capital costs from Block 5 would still need to be paid. Those are not included in the Block 6 costs.

^{***}Block 9 maximizes harvest of winter flows, and data come from Gary Fiske reports, July 23, 2015.

^{****} Yields not estimate at this time by *Confluence* runs, but worst year shortages expected to be less than 15%